The XMM-Newton Serendipitous Survey

Mike Watson

XMM-Newton Survey Scientist

Topics

- The XMM serendipitous sky survey
 - 2XMM catalogue & future catalogues
 - basic characteristics
 - example science
- Comparison with planned surveys: do we need both?

XMM-Newton Serendipitous Sky Survey

XMM pointed observation program

- 600-700 pointed observations per year
 - \Rightarrow sky coverage ~90 sq.deg/year
 - \Rightarrow 42K detections, 33K sources/year
 - \Rightarrow >600 sq.deg. to date
 - $\Rightarrow f_{x,min} < 10^{-14}$

XMM Catalogues

- constructed from whole pointed program by XMM-Newton Survey Science Centre on behalf of ESA
- 1XMM (2003), 2XMMp (2006), 2XMM (2007), 2XMMi (2008)

2XMM Catalogue

- 2XMM: largest X-ray catalogue ever
 - 3491 XMM observations over ~6 years
 - 247K detections \rightarrow 192K unique sources
 - 520 sq.deg. / 330 sq.deg. overlap excluded
 - "science grade" catalogue
 - state-of-the-art processing & instrument calibration
 - careful quality control, screening and characterisation
 - released August 2007

typically 40% overlap due to repeat pointings, mosaics etc.

360 sq.deg. (MOS2); 320 sq.deg. (pn)
 SENSITIVITY

typical (deepest) sensitivity limits f_X (soft) ~ 3 (1) x 10⁻¹⁵ f_X (hard) ~ 1.5 (0.8) x 10⁻¹⁴

ASTROMETRY

position errors $\langle \sigma \rangle = 1.5$ arcsec

- → average position offset ≤2 arcsec
- → max.position offset 5 arcsec (for vast majority)
- → systematics (≤ 0.35") probably dominated by sampling/fitting

Key characteristics of XMM serendipitous sky survey

- Heterogeneous survey (by definition)
 - wide range of observation times
 - 65% at high b_{II} , 35% at low b_{II}
 - mixed observing modes/filters
- Image content/quality issues for survey science
 - bright point sources (PSF wings & OOT events)
 - bright extended sources
 - image defects
- Net effect for surveys
 - 30-70% useable fraction for serendipitous science: depending on project

2XMM source detection & characterisation

- 60% of obs. have <1% problem area</p>
- 85% of obs. have <10% problem area</p>

observation time per field (net science exposure)

Field content: XMM targets

- 50% point-like
- 33% extended (10% <3')
- 15% "survey" (no discrete target)

XMM Serendipitous Sky Survey

STRENGTHS

- observations free
- high quality catalogue & products publicly available
- very large sky area and sample size
 - 100 sq.deg. per year
 - 40K detections per year
 - cannot be matched by planned survey
 - large samples / rare objects
- useful depth for many projects
 - flux ~ bulk of CMXRB

X-ray spectrum

2XMM has spectra & time series for ~14% of all cat sources (~27K sources)

XMM Serendipitous Sky Survey: High precision source counts

- 1129 XMM-*Newton* observations at *lbl* > 20°
- total sky area of 132.3 deg²
- > 30,000 source detections
- best determination of extragalactic X-ray source counts
- immune from cosmic variance
- source counts in different bands provide **strong** constraints on distribution of AGN absorption $[N_H(L_x, z)]$ via comparison with models

hard

Mateos et al 2008

1000

integral source counts: comparison with previous work

Mike Watson Leicester University

soft

2XMM cross-match with SDSS DR5 Optical colour-colour plots for high fx/fopt

XMM XXL Survey Workshop, Paris, April 2008 2XMM cross-match with SDSS DR5 Fit to observed distributions → constraints on N(z) for AGN population

Extreme & rare objects in 2XMM

- AGN with f_x/f_{opt} (>3300) •
 - highest recorded ratio, comparable to isolated NS
 - type 2 AGN @ z=1.87, host galaxy dominates up to K band
 - $-L_{\chi} > 10^{46} \,\mathrm{erg} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
 - massive host galaxy $\sim 10^{11} M_{\odot}$

no SDSS counterpart, no clear

galaxy overdensity in deep INT

Likely z>1 cluster of galaxies

imaging (griZ)

 $-F_{x} = 3.5 \times 10^{-13} \text{ cgs}$

- for z > 1, kT > 7 keV

- L_x > 5 × 10⁴⁴ erg s⁻¹

•

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

M-Newton

Thanks to UKIRT service program and Mark Rawlings (JACH) for quick-look image

XMM Serendipitous Sky Survey

ISSUES

- heterogeneous data: only ~30% useable for most demanding projects (efficiency issue)
- little area at deepest fluxes: eg <10% of total area at f_x(soft)~10⁻¹⁵
- limited contiguous coverage (eg important for LSS)
- random sky distribution: λλ-data availability for ID and follow-up
 - but note all-sky and large area optical/IR surveys
 - and existing follow-up programs

2XMM cross-match sample sizes	
USNO B1:	35,000
SDSS DR6:	30,000+
2MASS:	23,000
UKIDSS LAS :	7,000 (DR3)

UKIDSS/VISTA: 30-50% of XMM sky PanStarrs: ~70% of XMM sky to 24^m

SSC XID program

ID of selected samples from XMM serendipitous surveys, eg XMS (Carrera et al.); XBS (Della Ceca et al.); GPS (Motch et al.)

2XMMi (next installment of 2XMM)

- sources from additional year of XMM observations
 - public by May 2008, typically observed on or before April 2007
- ~700 extra observations
- new total catalogue size
 - detections: 300K (19% larger)
 - sources: 225K (17% larger)
- public release July/August 2008

Concluding remarks

- XMM serendipitous sky surveys & catalogues are invaluable FREE resource for characterising and exploring X-ray source populations
 - will continue to grow over lifetime of mission
- But serendipitous data does not meet all survey needs, in particular
 - contiguous/planned areas:
 - for effective follow-up/ID
 - LSS science
 - depth >20 ksec
 - uniformity, optimized mosaicing
- New wide angle surveys with XMM would benefit significantly from a raster scan mode

SPARE SLIDES

Planned vs serendipitous surveys

- Advantages of Planned (compared with Serendipitous) approach
 - uniformity
 - exposure, sensitivity, operating mode, filters...
 - desired depth (exposure time)
 - sky region
 - survey region can be chosen to avoid brightest point and diffuse sources
 - larger effective sky area for survey goal (factor ~2 or more)
 - survey region can be contiguous (required for some science goals)
 - survey region can be chosen to match other resources (existing or planned), eg coverage at other $\lambda\lambda$
 - time variability: potentially available from repeated scans
 - → factor 3-10 more efficient than serendipitous data (for same area)

Survey strategies

How to map a region larger than XMM FOV with EPIC?

- Current approach
 - mosaic of overlapping pointings
 - overlap helps with
 - vignetting $\leftarrow \rightarrow$ exposure map
 - PSF degradation off-axis
 - "edge" effects
- Issues
 - observation overheads
 - 3-6 ksec per pointing
 - exposure non-uniformity
 - effects of space weather
- FUTURE
 - larger areas?
 - deeper few sq.deg. surveys?

COSMOS (public data)

 $R_{FOV} \approx 15 \text{ arcmin};$ $A_{FOV} \approx 0.18 \text{ sq.deg.} \approx 700 \text{ sq.arcmin.}$ Best data inside R~12 arcmin

Survey strategies: 1-100 sq.deg regions

- Such surveys could be considerably improved if XMM had a "raster mode"
 - conceptually a set of (overlapping) slews over desired region
 - crucially would avoid multiple pointing overheads
 AND provide significantly better exposure uniformity
- BUT: "XMM-Newton does not have any capability to create a raster of nearby pointings via small aspect motions in an automatic fashion." [XMM UHB] ...
- So what about the slow slew survey mode?

3 x 3 pointings covering 1 sq.deg.15 arcmin separationhighly non-uniform exposure

8 x 8 pointings covering 1 sq.deg.6 arcmin separationcentral exposure very uniform

Case study: Search for Compton Thick AGN

- Population of heavily absorbed AGN (Compton Thick ~ $N_H \ge 10^{24} \text{ cm}^{-2}$) known to be large locally
- Important for understanding obscured accretion, but poorly constrained
- Rare objects need large survey, ie 2XMM
- Approach
 - Kauffmann sample**: SDSS AGN selected using line ratios (z<0.3)
 - narrow line objects
 - use $L_{\rm [OIII]}$ as proxy for $L_{\rm AGN}$
 - not affected by nuclear obscuration
 - select objects with depressed $L_{HX}/L_{[OIII]}$ signature of CT X-ray absorption

Kauffmann et al., 2003, MNRAS, 346, 1055

Acknowledgements: Dave Alexander, Jonathan Gelbord, Martin Ward ... & Antonis Georgakakis

** DR4 version: http://www.mpa-garching.mpg.de/SDSS/DR4/Data/agncatalogue.html

Search for Compton Thick AGN

PRELIMINARY RESULTS

- 403 SDSS AGN covered by 2XMM fields
- 77 detected in 2XMM
- 326 upper limits from 2XMM fields ~50% "useful" UL
- 30 CT candidates (17 det/13 UL)
 - ~ 13% of sample
 - final sample ~20 objects?

log L_[OIII]

Search for Compton Thick AGN

X-ray colours

L_[OIII] vs z

XMM XXL Survey Workshop, Paris, April 2008 Search for Compton Thick AGN

 $L_x/L_{[0111]} < 0.01 L_x/L_{[0111]}$ (normal) CT candidates $L_{\chi}/L_{[0111]} \sim 0.1 L_{\chi}/L_{[0111]}$ (normal)

M-Newton