

Helping to open the SZE window to the Universe

Róbert Šuhada

XMM-XXLWorkshop Paris, 14. 4. 2008

H. Böhringer, J. Mohr, R. Fassbender, G. W. Pratt, A. Finoguenov, D. Pierini, C. Ngeow, A. Stanford et al.

APEX Team: R. Kneissl, F. Bertoldi et al. SPT Team: J. Carlstrom et al. ACT Team: L. Page et al.

Overview

1. X-ray-SZE cluster survey

- \cdot Aims
- · Collaborators
- · Survey characteristic

2. Space weather for surveys

Orb. phase and seasonal dependence
Residual soft proton contamination

3. Survey status and outlooks

4. Conclusions

Cosmology with Clusters

Requirements:

- Way to select large number (~10⁴) of gal. clusters
- Large redshift range
- Observable which is an unbiased,
- low-scatter estimator of cluster mass
- Well controled selection function and calibration

Aims & Motivation

Multi-wavelength survey

- Paving the way to precision cosmology with clusters
- The SZ window for cluster astrophysics & cosmology is opening
- Bring together the established and this new technique for cluster selection on a common field
- Unprecedented intercomparison possibilities (SZ, X-ray, optical+NIR, IR and radio data)

X-ray part of the survey

- Detect and study clusters in the test field
- Help calibrating future SZ surveys
- Cluster evolution and cosmological modeling
- Get (modest) constraint on cosmological parameters
- Find and study AGN, AGN clustering properties

Collaboration

APEX, R. Kneissl et al. SPT, J. Carlstrom et al. ACT, L. Page et al.

CTIO Blanco (4m, *griz*), J. Mohr et al.

GROND (2.2m, *BVRIJHK*), MPE Team

Spitzer Space Telescope (IRAC, 3.6, 4.5, 5.8, and 8 μm) A. Stanford et al.

Australia Telescope Compact Array (ATCA) M. Johnston-Hollit et al.

X-ray-SZE cluster survey

Survey characteristics:

- Survey a 6 deg² region in the common APEX, SPT and ACT test region with XMM-Newton
- "olympic symbol" survey design with partial overlaps, 42 pointings
- 12 ks exposures (10 ks science time)
- Flux limits (0.5 2 keV): ~ 6.5 10^{-15} erg cm⁻² s⁻¹ (point sources),

~ 1.0 10^{-14} erg cm⁻² s⁻¹ (extended sources)

	R	# of Fields
All fields	0.58	41
No zeroes	0.66	36
Months 1-6	0.12	7
Months 7-12	0.68	34
Phase < 0.3	0.48	21
Phase > 0.7	0.39	5

(P.M. Rodriguez Pascual and R. Gonzalez-Riestra, 2007)

Residual soft proton contamination:

(method by de Luca & Molendi, 2004)

X-ray-SZE cluster survey

0.5 – 2.0 keV 8" gaussian smoothed

X-ray-SZE cluster survey

Detected: ~2000 sources total, ~100 extended source candidates, ~ 20 cluster candidates with optical counterparts (screening not finished yet!)

Optical overlays

15-05 25-05 35-05 45-05 55-05 65

Optical overlays

1E-03 2E-03 3E-03 4E-03 3E-03 4E-03

Outlook

- Detection of ~40 50 clusters with good selection control
- Provide X-ray counterparts of 100% of SZ selected clusters with z < 1 and > 50% for z > 1
- ~ 10% clusters with > 500 photons \rightarrow direct T_x

Extension to the originally proposed 12.5 deg² would allow to fully exploit the potential of the survey

Outlooks for XMM-XXL

Conclusions

- X-ray-SZE cluster survey will provide a X-ray catalogue of clusters for selection function studies of SZ experiments
- Additional science includes cl. evolution and cosmology modeling, AGN clustering analysis etc.

- \bullet Extending to 12.5 deg² allows for stronger constraints especially for higher z
- An substantial overlap with SZ experiments might be an interesting variant for XXL

- Intensity of flaring periods depends on orbital phase and time of year
- Might lead to non-negligible losses for short exposure observations

Thank you

Workflow

- Survey in the common APEX, SPT and ACT test region with XMM-Newton
- Low N_H
- No unusual X-ray background features

RASS, 0.75 keV

- Survey in the common APEX, SPT and ACT test region with XMM-Newton
- Low N_H
- No unusual X-ray background features

0.5

1.5

2.5

2