Normal Galaxies in a Very Wide XMM Survey

A. Ptak (Johns Hopkins University)

X-ray Emission Mechanisms in Starbursts

Point Sources

- Hot Stars (mostly massive OB, WR stars; L_X <~ 10³³ ergs s⁻¹)
- Young supernovae ($L_X <~$ 10³⁹ ergs s⁻¹; more typically $L_X <~$ 10³⁶ ergs s⁻¹, e.g., Cas-A)
- Low-mass and High-mass Xray Binaries/BHC (L_X <~ 10³⁹ ergs s⁻¹)
- ULXs (Ultraluminous X-ray sources; L_X = 10³⁹⁻⁴¹ ergs s⁻¹)
- LLAGN ($L_X > 10^{39} \text{ ergs s}^{-1}$)

Diffuse Flux

- Hot ISM ($L_X < ~ 10^{41} \text{ ergs s}^{-1}$)
- Superwinds ($L_X < \sim 10^{42} \text{ ergs s}^{-1}$)
- IC scattering of IR and CMB

See Persic & Rephaeli (2002)

Normal/Starburst Galaxy Goals of a very Wide Survey

- Derive unbiased local XLF
- Determine statistical properties of X-ray emission of nearby galaxies
 - Select by spectral type, SFR, stellar mass, environment
 - For sources with > 50 counts, crude spectral analysis
 - How does F(0.5-2.0)/F(2-10) depend on galaxy type, SFR, etc.?
 - Relative importance of hot ISM and binaries
 - Is heating of ISM sufficient to drive outflows?
 - Enrich IGM
 - Drive evolution of low-mass galaxies
 - Results can be used to improve priors for (Bayesian) classification of sources (Norman et al. 2004, Ptak et al. 2007)
- Potentially detect tidal captures

Fitting for Pure Luminosity Evolution

Fit low and high-z XLFs simultaneously, only allowing logL* to vary between XLFs

Fitting for Pure Luminosity Evolution

Fit low and high-z XLFs simultaneously, only allowing logL* to vary between XLFs

Posterior for $\Delta logL^*$

Early-type Galaxies p = 1.57 (0.54 - 2.66)

 $\Delta \log L^* = 0.23 (0.07 - 0.38) \Delta \log L^* = 0.34 (0.23 - 0.46)$

 $loqL^* \sim (1+z)^p$

Ptak et al. (2007)

X-ray/SFR and X-ray/M

- X-rays have been known to be correlated with both star-formation rate and galaxy mass since 1980s
 - SN, SN-heated gas, High-mass X-ray binaries (HMXRB), black-hole candidates (BHC), ultra-luminous X-ray sources (ULXs) correlated with SFR
 - Low-mass x-ray binaries (LMXRB) correlated with galaxy mass

Total X-ray Flux / SFR Correlation

• Ranalli et al. (2003)

- Correlated 0.5-2.0 keV and 2-10 keV X-ray lum. vs. both radio (1.4 Ghz) and FIR lum.
- SFR = 2.2 x 10^{-40} L_{0.5-2.0 keV}
- SFR = 2.0 x 10^{-40} L_{2-10 keV}
- Persic et al. (2004): SFR = 10^{-39} L₂₋₁₀

keV, HMXRB

- Grimm et al. (2003), Gilfanov et al. (2004)
 - $L_{2-10keV,HMXRB}/SFR$ relation is non-linear below SFR ~ 1

• Implies universal HMXRB XLF and cut-off exist

• Colbert et al. (2004): $L_{XP} = 1.3 \times 10^{29}$ (Mass) + 0.7 x 10³⁹ (SFR)

X-rays vs. FIR and Radio

From Ranalli et al. (2003)

Lehmer et al. (2008)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Serendipitous Source Surveys

- Serendipitous source surveys of galaxies tend to result in weak detections and small sample sizes due to limited overlap
 - Hornschemeier et al. (2005) correlated Chandra archive with SDSS galaxy catalog of Brinchmann et al. (2004)
 - 2XMM catalog SDSS match (Georgakakis 2008, Watson et al 2008)
 - Correlation of full Chandra and XMM-Newton archive with RC3, etc. catalog may be promising
 - Swift UVOT + XRT survey (S. Immler)

6/24 emissionline galaxies detected were star-forming, but occupy a relatively narrow SFR range

Results consistent with lower X-ray/SFR ratio

Absorption line galaxies from Hornschemeier et al. (2005)

Pointed Observations

- Remove bias by selecting galaxies to be observed from galaxy catalogs rather than Xray flux
- SINGS: Approved Chandra large program (PI L. Jenkins)
- Nearby Field Galaxy Survey: well-determined SFR via integral-field spectroscopy
 - Observed 6 targets w/ XMM
- Very slow way to build a sample, but gets larger number of sources with sufficient counts for spectral analysis

From Kewley et al. (2002)

UGC 5335

normalized counts s⁻¹ keV⁻¹

ratio

Tentative evidence for higher X-ray/SFR norm.at SFR > 1, break below SFR = 1

Note: Lehmer et al. (2008) found constant Xray/SFR ~ from stacking in CDF fields, at level consistent with lower X-ray/SFR norm.

Flux	N (deg ⁻²)	Photons
		10 ks
1e-15	~ 10-30	~ 7
2e-15	~ 3-10	~ 15
5e-15	~ 1-3	~ 35
1e-14	~ 0.3-1	~ 70
5e-14	~ 0.04-0.1	~ 350

Expected Number Counts:

Flux	N(50)	N(200)
1e-15	250-1500	
2e-15	150-500	300-1000
5e-15	50-150	200-600
1e-14	15-50	
5e-14	2-5	8-20

< 50 photons 50-100 photons 100-500 photons

> 500 photons

 $N(50) = 50 \text{ deg}^2 \text{ survey, } 40 \text{ ks exp.}$ $N(200) = 200 \text{ deg}^2 \text{ survey, } 10 \text{ ks exp.}$ With either survey strategy stacking will give mean spectra for galaxies in a given subset

Ancillary Data

- $F_X/F_{opt} \sim 10^{-2}$, only need to get to R ~ 22 for faintest X-ray detect galaxies
- "Value-added" spectra from SDSS gives stellar mass, SFR
- UV from GALEX and OM to get unobscured SFR, improve phot-z
- Spitzer IR would improve SFR estimate, help segregate LLAGN

Field Selection

- Field selection will be dominated by AGN and cluster requirements, but good SFR (FIR, UV, and/or optical spectra) and stellar mass (NIR) indicators would be nice
- SWIRE fields
- Pan-Starrs Medium Deep Survey
 - 10 fields, 7 sq. deg. FOV
 - Expected to detect ~ 15 tidal captures/year

Wide Field X-ray Telescope

- ~ 5" psf across 1 degree FOV, 6X Chandra area
- Proposed for 2007 NASA Mission Concept study but not accepted
- Awarded internal funds for initial development
- Key participants include Colin Norman (PI), Riccardo Giacconi, Steve Murray, Steve Allen, Niel Brandt, Piero Rosati, Roberto Gilli, Stefano Borgani, Paolo Tozzi
- Would perform 3 dedicated surveys, analogous to Galex (wide, medium, deep)
 - > 10⁵ normal/SB galaxies would be detected

Summary

- Constant exp. time x solid angle will result in roughly same no. of galaxy detections (~ 500-1000)
- Main science goals would include
 - Determining local XLF of galaxies
 - Baseline for evolution
 - Energy density of hot ISM + binaries

Summary

- Deeper exposures would result in more galaxies with enough counts for crude spectral analysis (roughly 100 for 50 deg² / 40 ks survey)
 - Allow for determination of flux in soft band (often dominated by hot gas) vs. hard band (dominated by binaries) as fn. of galaxy parameters
 - Improved flux estimates (by factor of ~ 2) when at least hardness is known
- Stacking will give mean spectra for tens of subsamples

Pan-Starrs MDS

Filter	Bandpass	5σ, 1 vr	5σ, 3 vr
g	405-550	26.68	27.27
r	552-689	26.34	26.93
i	691-815	27.34	27.93
Z	815-915	25.67	26.26
У	967-1024	24.23	24.82

Pan-Starrs MDS Fields

XMM-LSS CDFS IFA/Lynx COSMOS Lockman NGC 4258 VISTA EliasN1 Vimos4-DXS-SSA DEEP2