Cluster survey studies with XMM: insights from the XMM-LSS

Florian Pacaud

for the XMM-LSS collaboration

XMM-LSS?

Widest contiguous XIVIIVI survey so far

Nominal 10ks

- + 20 ks
- + 50 ks
- + 100ks

Total of 1.3 Ms

The XMM-LSS collaboration

Use the unprecedented sensitivity of XMM to map the LSS through:

- The galaxy cluster distribution up to z~1
- The distribution of AGNs up to z~4

PI: M. Pierre (Saclay)

Birmingham: Ponman, Raychaudhury

Bristol: Birkinshaw, Bremer

Caltech: Lonsdale

Cambridge: Gandhi

Leiden: Rottgering

Liège: Gosset, Surdej

Madrid (ESA): Altieri, Valtchanov

Milan (Brera): Andreon, Trinchieri

Milan (I ASF): Chiappetti, Maccagni

Marseille: Le Fèvre, Mazure

Saclay: Alloin, Duc, Refregier

Santiago (PUC): Galaz, Quintana

Paris (IAP): Mellier, Vigroux

U. Victoria: Willis

What does the data look like?

What does the data look like?

What does the data look like?

The XMM-LSS pipeline

A 2 step process!

Pacaud et al 2006

- (1) Image filtering in the wavelet space Low S/N detection of source
- (2) Maximum likelihood fitting
 - 2 source model: PSF & β-model
 - Final catalogues including:
 - Count-rates
 - Detection likelihood
 - Extension likelihood
 - ... etc.

Designed and tested over extensive simulations!

Selecting a cluster sample

Green = AGNs Magenta = Clusters Red = Spurious.

C1:Uncontaminated5-6 / deg²

50% contaminated but controlled another 5 / deg²

C3:
Whatever remains
?? / deg²

Selecting a cluster sample

Green = AGNs Magenta = Clusters Red = Spurious.

C1:Uncontaminated5-6 / deg²

50% contaminated but controlled another 5 / deg²

Whatever remains? / deg²

Detection rates

Detection rates

Not a flux !

Pacaud et al 2006

The C1 clusters

29 clusters over 5.2 deg²

= XMDS (20 ks)

Pacaud et al, 2007

Measuring temperatures

- Proper statistical treatment needed
- Possible statistically for low T clusters with just ~150 cts
- Empirically: works for all Class 1 clusters

Willis, Pacaud, Valtchanov et al. (2005)

L_X-T relation over 5.2 deg²

Self-similar: L(T,z) = L(T,0).E(z)

 $E(z) = H(z)/H_0 = > 1.5$ at z=1

L_x-T evolution

For $\sigma_{ln(L|T)} = 0.5$

Constraining L-T evolution

Predicted dn/dz (WMAP 3rd yr.)

Comparison with SZ

X-rays: C1 for 10ks = 5-6/deg²

\$<u>Z</u>: 10μK @150GHz + 10μK @220GHz = 3-4/deg²

OK

Impact of the dispersion in M-LX

Dark energy?

Not without a better Mass-obs calibration!

example:

different L_X-T evolutions mimic variations in the equation of state of Dark Energy

Conclusion

- Shallow exposures already enable the detection of 6 (~12) clus. per deg².
 - => We have the tools to extract them and the first sample is consistent with our expectations.
- We can derive temperatures for the C1 sub-sample and constrain the M-Obs relations
 - => Crucial to determine the required depth of an XXL survey

Conclusion!

A very accurate knowledge of M-Obs is necessary to constrain cosmology

=> Topic of several talks tomorrow

. . .

Including mine