Xboötes: the 9.3 square degree Boötes field

"false-color" 0.5-7 keV X-ray image

* X-ray and infrared properties of AGN

* Using AGN to Map Cosmic Structure

Stephen Murray and the XBoötes Team

> Harvard-Smithsonian Center for Astrophysics

Collaborators

Chandra (CfA)

•S. Murray, W. Forman •A. Kenter, N. Caldwell •R. Hickox, C. Jones •P. Eisenhardt, M. Brodwin •V. Gorjian, M. Pahre •and the IRAC Shallow Survey Team Optical spectroscopy (OSU/Arizona) •K. Kochanek, D. Eisenstein •and the AGES Team Optical photometry (NOAO) •B. Januzzi, A. Dey, K. Brand and the NDWFS Team

•and more...

Outline of Talk

- Introduction
- What is the Xbootes Survey?
- Using Hectospec, Chandra, Spitzer to characterize AGN
- X-ray and IR properties of BLAGN
- Mapping the cosmic web with AGN
- The local environment of AGN
- Work in Progress

Multiwavelength Observations of the Boötes Field

VLA P-band	90 cm	7 sq. deg	100µЈу	100% complete
VLA L-band	21 cm	1 sq. deg.	15µЈу	100% complete
VLA (FIRST)	21 cm	9 sq. deg.	1mJy	100% complete *
Westerbork	21 cm	7 sq. deg.	8µЈу	100% complete
Spitzer/MIPS	24,70,160µm	9 sq. deg.	3.0,30,100mJy	100% complete *
Spitzer/IRAC	3.6,4.5,5.8,8.0µm	9 sq. deg.	6.4,8.8,51,50µЈу	100% complete *
NOAO	J,Ks	5 sq. deg.	23 mag	100% complete *
NOAO	K,Ks	9 sq. deg.	19.2 mag	100% complete *
NOAO	J,H	9 sq. deg.	21 mag	40% complete
NOAO	B _w ,R,I	9 sq. deg.	25.5-26.6 mag	100% complete *
NOAO	U	9 sq. deg.	25 AB mag	100% complete
NOAO	υ	1 sq. deg.	26 AB mag	100% complete
GALEX	FUV,NUV	1 sq. deg.	26 AB mag	100% complete
GALEX	FUV, NUV	9 sq. deg.	25 AB mag	in progress
Chandra	0.5-2.0 keV	9 sq. deg.	4,7x10 ⁻¹⁵ erg s ⁻¹ cm ⁻²	100% complete *
Chandra	2.0 -7.0 keV	9 sq. deg.	1.5x10 ⁻¹⁴ erg s ⁻¹ cm ⁻²	100% complete *
NOAO/Keck	spectroscopy	sparse	24 mag	in progress
MMT/Hectospec	spectroscopy	9 sq. deg.	R~20.5 mag	100% complete
Spitzer/IRS	spectroscopy	sparse		in progress

Bootes Survey Imaging Data

Optical photometry: NOAO DWFS photometry B,R,I,J,K (Januzzi & Dey 1999)

X-ray: Chandra XBootes survey (Murray et al. 2005, Kenter et al. 2005)126 ACIS fields @ 5 ksec each > 3000 X-ray sources

Infrared: Spitzer IRAC Shallow Survey (Eisenhardt et al. 2004)

The Bootes field was observed with the IRAC camera on Spitzer in four bands: 3.6, 4.5, 5.8, 8.0 microns.

~30,000 sources are detected in all four IRAC bands

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

Declination

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

Right ascension

Jeclination

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

Right ascension

Declination

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

Right ascension

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

Right ascension

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

- Xboötes:
- 126 Chandra ACIS pointings
- 5 ksec each field (630 ksec)
- Joint GTO and GO program
- 14^h 32^m +34° 06'
- 4642 sources detected (>=2 cts)
 - 625 spurious
- 3293 sources detected (>=4 cts)
 - 22 spurious
- 42 extended sources (>=10 cts)
- f_{min}= 4(8)x10⁻¹⁵ erg cm⁻² s⁻¹ (0.5-7 keV)
- 98% sources >=4 cts matched to NDWFS candidates (R<=26)

MMT Bootes Survey AGES survey w/ MMT/Hectospec

The first sample contains ~2000 broad line AGNs, 80 narrow-line AGNs, and 19,000 "normal" galaxies.

AGN and Galaxy Evolution Survey (AGES)

- MMT/Hectospec fiber spectrograph
- 300 fibers/field
- Complete galaxies I<19.5</p>
- Complete X-ray >4 cts and I<21.5
- ~27,000 targeted galaxies
- ~1,500 targeted X-ray selected
 - E.g., z=3.53 AGN with 12 X-ray counts. I=19.28, Lx=3x10⁴⁵ erg s⁻¹(0.5- 7keV)

CXOXB J142547.4+352719

(Urry & Padovani 1995)

(Manners 2002)

15

log v (Hz)

16

17

18

14

-0.5

-1.0

12

13

X-rays: direct probe of central engine and accretion luminosity (~3200 in Boőtes)

(Urry & Padovani 1995)

(Manners 2002)

8

X-rays: direct probe of central engine and accretion luminosity (~3200 in Boőtes)

(Urry & Padovani 1995)

radio jet

broad line clouds

narrow line clouds

Sv

X-rays: direct probe of central engine and accretion luminosity (~3200 in Boőtes)

(Urry & Padovani 1995)

(Manners 2002)

Optical/UV: probe of regions close to (BL) or farther from (NL) the black hole; most affected by extinction (~2000 in Boőtes)

Infrared: due to reprocessed emission from dust, heated by the central engine (~2000 in Boőtes)

8

X-rays: direct probe of central engine and accretion luminosity (~3200 in Boőtes)

(Urry & Padovani 1995)

(Manners 2002)

Optical/UV: probe of regions close to (BL) or farther from (NL) the black hole; most affected by extinction (~2000 in Boőtes)

Infrared: due to reprocessed emission from dust, heated by the central engine (~2000 in Boőtes)

Total AGN Densify ~600 deg²

8

IRAC AGN 'Wedge' Stern et al 2005

IRAC AGN 'Wedge' Stern et al 2005

IRAC AGN 'Wedge' Stern et al 2005

X-rays: ~3300 in Bootes sample (≥4 counts, ~1/2 in wedge)

Optical/UV: ~2000 in sample (~1/2 X-ray selected)

Infrared: ~2000 in sample (~1/2 X-ray selected)

IRAC AGN 'Wedge' Stern et al 2005

X-rays: ~3300 in Bootes sample (≥4 counts, ~1/2 in wedge)

Optical/UV: ~2000 in sample (~1/2 X-ray selected)

Infrared: ~2000 in sample (~1/2 X-ray selected)

10

Color-Selection of Obscured AGNs

Selection Criteria:

5σ in all IRAC bands
In IR AGN Wedge
NOAO R-band flux (1915 total)
Redshift > 0.7
Spectroscopic or Photo-z (1410)

~I/2 X-raydetected

Hardness ratio: HR=(HB-SB)/(HB+SB) crude measure of X-ray spectrum Average X-ray fluxes from stacking analysis

Hardness ratio: HR=(HB-SB)/(HB+SB) crude measure of X-ray spectrum Average X-ray fluxes from stacking analysis

Hardness ratio: HR=(HB-SB)/(HB+SB) crude measure of X-ray spectrum Average X-ray fluxes from stacking analysis

Hardness ratio: HR=(HB-SB)/(HB+SB) crude measure of X-ray spectrum Average X-ray fluxes from stacking analysis

HR for IRAGN 2s corresponds to moderate obscuration, NH~3x1022 cm-2

HR~-0.5 for IRAGN 1s corresponds to a spectrum typical of Type 1 AGNs (photon index Γ =1.8)

Follow up Observations of IRAGN2

~250 cts/IRAGN

Source 96

data and folded model

z=0.92 nH=4.1±0.6×10²² cm⁻² Γ=1.70

Source 09

data and folded model

z=1.58 nH=2.9 \pm 1.0 × 10²² cm⁻² Γ =1.70

ssm 5-Jul-2007 02:21

* Using AGN to Observe the Cosmic Web

Xbootes 9.3 Square Degree Survey

Other Surveys		z=0	z=1	z=3	
 DEEP2 0.7 < z < 1.4 4 x 1 sq. deg 40.000 redshifts 	OCDM				
 2dF z<0.2 1500 sq. deg 200,000 redshifts 	SCDM				
 SDSS (~12 AGN /sq deg) z<2.3 6600 sq. deg 850,000 redshifts 	LCDM				
		lenkins et al 1998 (Ap.I 499 20-40)			

Enabled by the high surface density of AGN in XBoötes Survey

Enabled by the high surface density of AGN in XBoötes Survey

16

Enabled by the high surface density of AGN in XBoötes Survey

X-Ray selected AGN and galaxies trace same structure at z<0.7 X-Ray sources continue to trace structure at z>0.7

16

- Not X-ray Selected (18,820)
- Most galaxies with z<0.7
- 531 z>1, must be AGN, but not detected in shallow x-ray survey

Нрс 6000 Ì

- Not X-ray Selected (18,820)
- Most galaxies with z<0.7
- 531 z>1, must be AGN, but not detected in shallow x-ray survey

- X-ray Selected (1531)
- ~250 "galaxies"
- ~80 "narrow emission line"
- ~1200 "AGN'

AGN Environment

- Local Galaxy Density may impact:
 - Activity
 - Type

. . .

Luminosity

Redshift Slice 0.41<z<0.43

Work in Progress

Work in Progress

- Re-survey 1/2 of Bootes to increase the number of AGN and measure variability
- Deeper exposures to extract spectra of IRAGN
- Shallow Survey in DEEP2
 - How does environment affect the AGN (XBONGS vs BLAGN)?
 - Why is X-ray emission less for IR brighter galaxies?Does cosmic structure change with redshift?

Chandra DEEP2 Observations

Fields 2 and 4

- •12 x 10 ksec exposures for each field
- some overlaps give 20-30 ksec total (not considered yet)

Use wavelet source detection

- •543 Field 2, 578 Field 4 to ~3x10⁻¹⁵ erg cm⁻²s⁻¹
 •347 Field 2, 388 Field 4 to
- $\sim 5 \times 10^{-15} \text{ erg cm}^{-2} \text{s}^{-1}$

Field 2: 16^h52^m +34^o55'

Field 4: 02h30m +00o00

DEEP2 Matches

Field 2

X-ray to photometric catalog¹
360/543 (within 2 arc-sec) 0.663
244/347 (>= 5) = 0.703
X-ray to Zcat_dr3_v1.0²
72 (z>0); 57 (0.7 < z < 1.4)
Potential w/hectospec I<22
174
136 (>=5)

Field 4

X-ray to photometric catalog¹
·390/578 (within 2 arc-sec) 0.675
·292/388 (>= 5) = 0.753
X-ray to Zcat_dr3_v1.0²
·86 (z>0); 60 (0.7 < z < 1.4)
Potential w/hectospec I<22
·188
·162 (>=5)

¹ Coil et al. 2004 ² Davis et al. 2003 ² Davis et al. 2007

AGN and LSS

Comoving Distance (Mpc)

Field 2

AGN and LSS

Comoving Distance (Mpc)

Field 4

12 arc-min

PDCS-1 Postman et al. (1996)

016 02 28 26.5 +00 32 20 119 0.50 0.75 4.26 87.8 32 ± 4 90 ± 9 178 0.50 1.94 6.48 108.6 35 ± 6 110 ± 16

redshift

PDCS-1 Postman et al. (1996)

 $016 \ 02 \ 28 \ 26.5 \ +00 \ 32 \ 20 \ 119 \ 0.50 \ 0.75 \ 4.26 \ 87.8 \ 32 \pm 4 \ 90 \pm 9 \ 178 \ 0.50 \ 1.94 \ 6.48 \ 108.6 \ 35 \pm 6 \ 110 \pm 16$

 $L_x=4x10^{43} \text{ erg cm}^{-2}\text{s}^{-1} (0.5 - 7.0 \text{ keV})$ ($L_x=2x10^{43}\text{erg cm}^{-2}\text{s}^{-1}$)

redshift

Brightest matched X-ray source (62 photons)

5 arcsec

Brightest matched X-ray source (62 photons)

5 arcsec

Power law 1.7

Brightest matched X-ray source (62 photons)

Deep2 spectrum

5 arcsec

Power law 1.7

5 arcsec

Brightest matched X-ray source (62 photons)

O II (3727) Ne III (3869)

Power law 1.7

Deep2 spectrum

5 arcsec

Brightest matched X-ray source (62 photons)

O II (3727) Ne III (3869)

Power law 1.7

Flux (0.5-7 kev)= $7x10^{-14}$ erg cm⁻²s⁻¹ Redshift z=1.07 L_x=4.4x10⁴⁴ erg s⁻¹

Deep2 spectrum

Future Plans More Optical Spectra for X-ray AGN • Hectospect at MMTO

174 + 188 possible new spectra to go with the 158 already in hand =>520
AGN accretion modes, host galaxies, and clustering (XBootes - Hickox 26.03)

Spitzer IRAC survey fields 2 and 4
 STAY TUNED