Optimizing the XXL survey design for cluster cosmological studies

J.-B. Melin, M. Pierre and F. Pacaud

April 15 2008

Contents

Cosmological context

- Clusters & Cosmology: identified issues
- Constraints from various XXL survey designs

Contents

Cosmological context

• Clusters & Cosmology: identified issues

Constraints from various XXL survey designs

Linking observations with theory

[see G. Holder's contribution]

Cosmology with clusters : challenges [see G. Holder's contribution] Individual masses to high precision 2 ways Well controlled mass-observable relations

Individual masses to high precision

 requires multi-frequency observations
 X, SZ, lensing How to combine them ?

[see M. Maturi's talk]

• Individual masses to high precision

- requires multi-frequency observations
- very expensive

Not achievable for all clusters of wide surveys (e.g. SPT, ACT, AMiBA, AMI, APEX)

[see T. Crawford's talk] [see J. Hughes' talk] [see J.-H. P. Wu's talk] [see R. Saunders' talk] [see R. Kneissl's talk]

Individual masses to high precision

- requires multi-frequency observations
- very expensive
- suitable for a limited area (<100deg²)

2 ways

• Individual masses to high precision

- requires multi-frequency observations
- very expensive
- suitable for a limited area (<100deg²)
- Well controlled mass-observable relations
 - "calibration" and/or "self-calibration" [see G. Bryan's contribution]

Individual masses to high precision

- requires multi-frequency observations
- very expensive

2 ways

- suitable for a limited area (<100deg²)

• Well controlled mass-observable relations

- "calibration" and/or "self-calibration"

$$Y = Y^* M^{\frac{5}{3} + \beta} \left(\frac{\Delta_c}{178}\right)^{\frac{1}{3}} E^{\frac{2}{3}} (H_o D_{ang})^{-2} (1+z)^{\gamma}$$

• Individual masses to high precision

- requires multi-frequency observations
- very expensive
- suitable for a limited area (<100deg²)

• Well controlled mass-observable relations

- "calibration" and/or "self-calibration"

$$Y = \underbrace{Y^*}_{3} M^{\frac{5}{3}} + \mathcal{B}_{3} \left(\frac{\Delta_c}{178}\right)^{\frac{1}{3}} E^{\frac{2}{3}} (H_o D_{ang})^{-2} (1 + z)^{\gamma}$$
 [see D. N

normalization, non gravitational physics, evolution

2 ways

[see D. Nagai's contribution]

Individual masses to high precision

- requires multi-frequency observations
- very expensive

2 ways

- suitable for a limited area (<100deg²)

• Well controlled mass-observable relations

- "calibration" and/or "self-calibration"
- normalization, non grav. physics, evolution

$$Y = Y^* M^{\frac{5}{3} + \beta} \left(\frac{\Delta_c}{178}\right)^{\frac{1}{3}} E^{\frac{2}{3}} (H_o D_{ang})^{-2} (1+z)^{\gamma}$$

Individual masses to high precision

- requires multi-frequency observations
- very expensive

2 ways

 $\theta_v = \theta_v^* \dots$

- suitable for a limited area (<100deg²)

• Well controlled mass-observable relations

- "calibration" and/or "self-calibration"
- normalization, non grav. physics, evolution

$$Y = Y^* M^{\frac{5}{3} + \beta} \left(\frac{\Delta_c}{178}\right)^{\frac{1}{3}} E^{\frac{2}{3}} (H_o D_{ang})^{-2} (1+z)^{\gamma}$$

scatter, covariance [see A. Evrard's talk]

2 ways

• Individual masses to high precision

- requires multi-frequency observations
- very expensive
- suitable for a limited area (<100deg²)

• Well controlled mass-observable relations

- "calibration" and/or "self-calibration"
- normalization, non grav. physics, evolution
- scatter, covariance between observables

Contents

- Cosmological context
- Clusters & Cosmology: identified issues

• Constraints from various XXL survey designs

Goals

Constrain cosmological parameters (σ_8 , Ω_M ,...) using **only clusters** in a self-sufficient approach

What's the importance of the mass-observable uncertainties in the analysis ?

Fisher analysis

Working hypotheses

Free parameters

 $\sigma_8, \Omega_M, \Omega_\Lambda, h$ α : "mass calibration" parameter (M $\Rightarrow \alpha$ M in the selection function)

Working hypotheses

Free parameters

 $\sigma_8, \Omega_M, \Omega_\Lambda, h$ α : "mass calibration" parameter (M $\Rightarrow \alpha$ M in the selection function)

The C1 cluster selection function

Working hypotheses

Free parameters

 $\sigma_8, \Omega_M, \Omega_\Lambda, h$ α : "mass calibration" parameter (M $\Rightarrow \alpha$ M in the selection function)

> <u>Observables</u> Cluster counts: **dN/dz** Correlation function: ξ

Studied XXL designs

For this study, we keep the same selection function in both cases (XMM-LSS C1 selection function) More exposure time will help for mass determination (α parameter)

The current XMM-LSS design [10 deg²]

Increasing the survey area by a factor of 20...

Survey area: 200 deg² or 50 deg²?

200 deg² or 50 deg² ? or 2 x 25 deg² ?

And if we include weak priors...

Knowing the correlation function or not

Knowing the correlation function or not

XXL survey only versus CMB constraints

Komatsu et al. 2008

Discussions and Conclusions

• (Self-)calibration of scaling laws and/or accurate mass determination is now the main issue to get precise cosmological parameter estimations with clusters only.

• 200 deg² (10ks expo., 50% cal. uncertainties) and 50 deg² (40ks expo., 10% cal. uncertainties) allow to reach ~the same precision on σ_8 and Ω_M . Which design to choose ?

• The correlation function is required in order to break degeneracies between parameters for cluster only studies.

• (Self-)calibration of scaling laws and/or individual cluster mass measurements ? What approach must we choose ?

• How to reach the 10% (or less ?) mass accuracy on individual clusters ? Multiple wavelength observations needed (X, SZ, lensing) ?