

Heidelberg University

Zentrum für Astronomie

Searching for galaxy clusters through weak lensing, X-rays and SZ observations

Matteo Maturi

Paris, April 15th 2008

Overview

- Galaxy clusters mass function \Rightarrow DE constraints
- We search for Galaxy clusters
- <u>One</u> method for <u>Four</u> different observables
- Numerical simulation and detection analysis

Galaxy Clusters

galaxies

Dark-matter	halo	+	gas	+	stars	&	ga
Mass			M_v ϵ	~ 10	14 - 10) ¹⁵	M_{\odot}
Virial radius			$r_v \sim 1 - 3 Mpc$				
ICM Temperature			$T\sim 10^7-10^8K$				

X-ray luminosity tSZ effect (CMB) kSZ effect (CMB) Gravitational Lensing

$$\begin{split} L_x \simeq 10^{45} \, erg/s \\ \Delta T_{tSZ} \sim 100 \, \mu k \\ \Delta T_{kSZ} \sim 10 - 30 \, \mu k \\ r_E \approx 1' + \text{Weak Lensing} \end{split}$$

Canada-France-Hawaii Telescope:

Abell 1185

Why galaxy clusters to study cosmology?

- Clusters formation history depends on cosmology
- For e.g.. in early dark energy models they form much earlier than in a Λ -CDM cosmology

How do we search for clusters?

Paris, April 15th 2008

One method for 4 observables

XXL workshop

k

Paris, April 15th 2008

The filter 'face'

0.12 X-rays filter: M=1e13 M_{sun}/h M=1e14 M_{sun}/h 0.1 Photon shot noise (white & uncorrelated) 0.08 P(x) 0.06 Instrumental noise (white & uncorrelated) 0.04 0.02 $\hat{\Psi}(k) \propto \tau(x)$ 0 10 15 20 х

SZ filter:

Noise from CMB (C_l & correlated in all bands) Instrumental noise (white & uncorrelated) $\hat{\Psi}({m k}) \propto {m C}^{-1}(k) {m F}({m k})$

WL filter:

Noise from LSS (P_l)

Intrinsic shape + shot noise of galaxies (white)

$$\hat{\Psi}(m{k}) \propto rac{\hat{ au}(m{k})}{P_N(k)}$$

Paris, April 15th 2008

Testing with Hydro numerical simulations

Cosmology

 $\Omega_m = 0.3, \ \Omega_\Lambda = 0.7$ H = 70 km/s/Mpc $\sigma_8 = 0.8$

Baryon physics

- A hybrid multi-phase model for star formation in the interstellar medium
- Radiative cooling within an optically thin gas consisting of 76% of H and 24% of He by mass
- Supernova feedback to model galactic outflows
- Heating by a time-dependent re-ionization at $z \approx 6$
- Metal lines emission: MeKaL model

Observations

X-rays: XMM & Chandra for 10 ks & 100 ks

SZ: ACT 145 GHz (1'.7, 2 μK), 225 GHz (1'.1, 3.3 μK), 265 GHz (0'.93, 5.7 μK)

Weak lensing: 30 gal/ $arcmin^2$, $\sigma_{\gamma} = 0.35$, $z_s = 1$ & $z_s = 2$

Paris, April 15th 2008

Numerics

$$L_{box} = 192 M pc/h$$
 $N = 480^3$
 $m_{dm} = 4.6 \ 10^9 M_{\odot}/h$
 $m_{gas} = 4.6 \ 10^9 M_{\odot}/h$

Simulations 'face'

SZ

X-rays

Weak lensing

Paris, April 15th 2008

Benchmark: Detections number

- Weak lensing and X-rays find a comparable number of detections
- SZ detections are less

Benchmark: Contamination %

- The WL contamination is larger but comparable to the X-rays one
- The SZ sample has a low contamination

Benchmark: Completeness

• All three techniques are comparable

Benchmark: Sensitivity

• Smaller masses can be probed with WL

Estimates vs. Simulations

- X-rays and SZ are well correlated
- F_x & Y are properly measured

Observables vs. Haloe masses

Central X-rays luminosity

- Very god fit with the scaling lows
- $Y \propto M^{5/3}$ & $L_X \propto M^{4/3}$

Conclusions

- Galaxy cluster can be used as a **probe for dark energy**
- We aim at detecting galaxy clusters using **all available observables together** (linear filter)
 - Weak lensing
 - W X-rays
 - SZ
 - Galaxy counting (still to come)
- This is optimal to search for clusters as they are expected to be, but unexpected is welcome (X-ray silent clusters?)
- Next step 1: include galaxy surveys (with photometric redshifts)
- Next step 2: combine all observable in a multi-band filter

Thank you for your attention!

References

- An optimal filter for the detection of Galaxy clusters through weak lensing Maturi, Meneghetti, Bartelmann, Dolag & Moscardini, 2005, A&A, 442, 851
- Searching dark-matter haloes in the GABODS survey

Maturi, Schirmer, Bartelmann, Meneghetti & Moscardini, 2007, A&A, 462, 473)

Testing the reliability of weak lensing cluster detections

Pace, Maturi, Meneghetti, Bartelmann, Moscardini & Dolag, 2007, A&A, 471, 731

• Statistical properties of SZ and X-ray cluster multi-band filter detections

Pace, Maturi, Bartelmann, Cappelluti, Meneghetti, Moscardini, 2007, in prep.