Selection and Covariance in Galaxy Cluster Surveys: A Multi-λ Model for Local Counts

August Evrard Department of Physics Michigan Center for Theoretical Physics University of Michigan

Collaborators: B. Nord, R. Stanek, E. Rasia, T. McKay (Michigan) E. Rykoff (UCSB), E. Rozo (OSU), B. Koester (Chicago), D. Johnston (JPL), E. Sheldon (NYU), R. Wechsler (Stanford),

Precise determination of DM virial scaling

virial relation in dark matter from 18 large N-body sims, 6 codes

A power-law + scatter model for multiple observables

• For i^{th} proxy, mean behavior of $s_i = \ln(S_i)$ is linear in $\ln M$ w/ slope m_i . For N such signals

$$\overline{\mathbf{s}}(\mu, z) = \mathbf{m}(z)\mu + \mathbf{b}(z)$$
 $\mu = \ln M$

• assume a log-normal joint likelihood about the mean

$$p(\mathbf{s} \mid \boldsymbol{\mu}, z) = \frac{1}{(2\pi)^{N/2} |\Psi|^{1/2}} \exp[-\frac{1}{2}(\mathbf{s} - \overline{\mathbf{s}})' \Psi^{-1}(\mathbf{s} - \overline{\mathbf{s}})]$$

where Ψ is the *covariance in signals* at fixed mass and epoch

$$\Psi_{ij} = \left\langle \left(s_i - \overline{s}_i(\mu, z) \right) \left(s_j - \overline{s}_j(\mu, z) \right) \right\rangle$$

Local model for multi-observable counts (the *s*-function)

- locally power-law mass function $dp = n(\mu) dV$ $n(\mu) = A \exp(-\alpha \mu)$
- convolve with log-normal likelihood for **s** to find the

joint property space density

$$n(\mathbf{s}) = \frac{A\Sigma}{(2\pi)^{(N-1)/2} |\Psi|^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{s}' \Psi^{-1} \mathbf{s} - \frac{\overline{\mu}^2(\mathbf{s})}{\Sigma^2}\right)\right]$$

where Σ^2 is the mass variance, and μ is the log-mean mass

$$\Sigma^2 = \left(\mathbf{m}'\Psi^{-1}\mathbf{m}\right)^{-1}$$
 $\overline{\mu}(\mathbf{s}) =$

$$\overline{\mu}(\mathbf{s}) = \frac{\mathbf{m}' \Psi^{-1} \mathbf{s}}{\mathbf{m}' \Psi^{-1} \mathbf{m}} - \alpha \Sigma^2$$

Note: **b**=0 or s = s-b(z) above.

Explicit 2D number counts: contours of log(n(s))

Mass selection properties

• Bayes' theorem => Gaussian expectation for mass selection

$$p(\mu \mid \mathbf{s}) = \frac{1}{\sqrt{2\pi}\Sigma} \exp\left[-\frac{\left(\mu - \overline{\mu}(\mathbf{s})\right)^2}{2\Sigma^2}\right]$$

with *biased mean*

$$\overline{\mu}(\mathbf{s}) = \overline{\mu}_0(\mathbf{s}) - \alpha \Sigma^2$$
selection bias from asymmetric scatter off a steep MF

$$\overline{\mu}_0(\mathbf{s}) = \sum^2 \left(\mathbf{m}' \Psi^{-1} \mathbf{s} \right)$$

inverse of input log-mean relation

<u>Good news</u>: bias in mass scales as the <u>variance</u> <u>Bad news</u>: high-end mass function is <u>steep</u>, $\alpha \sim 3$

Explicit 2D example

 $\Psi = \begin{bmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$ correlation coefficient $r \in (-1,1)$

• define equivalent scatter in mass

$$\sigma_{\mu i} = \sigma_i / m_i$$

• the log-mass variance is a harmonic mixture

$$\Sigma^{-2} = \frac{\sigma_{\mu 1}^{-2} + \sigma_{\mu 2}^{-2} - 2r\sigma_{\mu 1}^{-1}\sigma_{\mu 2}^{-1}}{1 - r^2}$$

To minimize scatter and bias in mass, we want:

- small intrinsic scatter
- steep mass relation $(m_i > 1)$
- anti-correlated signals

 $(\text{if } m_i > 0)$

17,000 SDSS maxBCG clusters with RASS detections/upper limits

 $\sigma_{\ln L_X, N_{gal}} = 0.83 \pm 0.03$

Rykoff et al 2008a

Rykoff et al 2008b

$$\ell = \ln L_{\rm X} ; \sigma_{\mu,\ell} = \sigma_{\ell} / m_{\ell} \qquad \nu = \ln N_{\rm gal} ; \sigma_{\mu,\nu} = \sigma_{\nu} / m_{\nu}$$

• log-mean behavior of binned data with mass

$$\overline{\ell}(\mathbf{v}) = m_{\ell} \Big(\overline{\mu}(\mathbf{v}) + \alpha(\mu) r \sigma_{\mu,\ell} \sigma_{\mu,\nu} \Big)$$

• implied slope of scaling with mean mass may be biased

$$d\overline{\ell}/d\overline{\mu} = m_{\ell} + (r\sigma_{\mu,\ell}\sigma_{\mu,\nu})d\alpha/d\mu$$

• variance is sensitive only to signal correlation

$$\sigma_{\ell,\nu}^{2} = m_{\ell}^{2} \left(\sigma_{\mu,\ell}^{2} + \sigma_{\mu,\nu}^{2} - 2r\sigma_{\mu,\ell}\sigma_{\mu,\nu} \right)$$

L_X–M from maxBCG sample

Johston et al 2007 Rykoff et al 2008b

 M_{200} from weak lensing, $L_{\rm X}$ from RASS, in fixed $N_{\rm gal}$ bins

Good agreement between X-ray and optically selected samples Non-zero optical-Xray correlation can *tilt* $N_{\rm gal}$ -binned relation due to running of MF slope $\alpha(M).$ magnitude scales with L_X - N_{gal} covariance

Is a power-law + multivariate Gaussian generic?

with Lorena Gazzola, F. Pearce (Nottingham)

Millennium Simulation: Gadget2 with gas under two physical treatments:

– preheating

gravity only

Covariance in ~3000 halos at z=0 with $M_{200} > 3x10^{13}$ Msun/h

Stanek et al, in prep

Local L-T relation: low-hanging covariant fruit?

Nord et al 2008

slopes.

Selection & Characterization: How to combine approaches?

Method	slope / scatter	mass scatter	blended fraction	comment
Optical	1.0 ± 0.2 / 0.1–0.5 ?	0.1–0.5 ?	5–20%	f _{blend} is likely to be z-dependent
SZ	1.6 ± 0.2 / 0.1–0.2 ?	0.06-0.12 ?	5-20% ?	ditto above, + no published detections
X-ray	$1.6 \pm 0.1 / 0.6 \pm 0.1$	0.37 ± 0.05	< 5%	Stanek etal scatter may be high

• SZ + optical will be done jointly (SPT + DES)

Use X-rays to characterize these detections?

- + mostly source photons
- + more clusters with well-measured T_X (compared to blind)
- timing: SZ source lists not yet available

Summary

 cluster survey analysis requires understanding of mass proxies *basic halo model*: power-law mean + log-normal covariance p(slµ) fixed s selects log-normal M dist'n with mean biased by αΣ² (co-)variance needs to be understood

* Apparent variation in the mass scale will bias best-fit cosmology.
* Variance in the proxy-mass relation will bias mass selection.

- value of multiple cluster measures improved mass selection, understand covariance (physics)
- role of simulations

test robustness of PL+log-normal covariance model selection function from mock survey skies (line-of-sight blending)

• role of XMM?

discovery or characterization? mix of both!